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S U M M A R Y  
Higher order approximations to the laminar boundary-layer flow of an incompressible fluid in the wake of a sym- 
metrical disturbance are given in the present paper. The two-dimensional case, documented elsewhere in great detail, 
[ i ] ,  [2], [3] and [4] is reconsidered. The Euler transformation is introduced and higher-order expansion terms are 
derived. The asymptotic expansions given in the paper are, of course, valid only to the extent that the boundary layer 
approximations apply, i.e. (for the rotationally symmetrical case) within a space of revolution with the centre of the 
wake as axis of symmetry. The terms neglected in the complete equations of motion become of order unity for very 
small x, where the expansion is not applicable in any case (as s becomes large), and at very large ~ (respectively q), 
x being given. 

The axisymmetrical case is expanded in a like manner, but in both cases the inner and outer coSrdinate expansion 
problem of matching with the near wake, considered by Meksyn [16] and Berger [11] is not treated: this, mainly, 
because its detailed form would depend on the particular upstream conditions obtaining, a subject which is outside 
the scope of the present work. 

1. Introduction 

The flow in the wake of streamlined bodies is of considerable technological interest in applica- 
tions ranging from aerodynamics to the chemical process industries. It will be shown in what 
follows that it also has analytical properties of notable interest, mainly because it cannot be 
reduced to single solutions of the similarity type. It has, therefore, been analysed quite exten- 
sively, starting with Goldstein [1]. It was first shown that at some distance downstream from 
a streamlined disturbance with a plane of symmetry, for instance a fiat plate, it will be sufficient 
to use the boundary-layer approximations to the full equations of flow. One may, furthermore, 
assume that sufficiently far downstream the velocity-defect, compared to the flow infinitely 
far away from the obstacle, is small: thus regular asymptotic approximations to this solution 
might presumably be obtained with the velocity defect as the expansion parameter. 

It is naturally not clear a priori whether a satisfactory perturbation scheme can be developed 
in this manner: it has been shown by many investigators, Goldstein [1], Stewartson [2] Crane 
[3], and Chang [4] amongst others that certain restrictive conditions will have to be satisfied 
by such a scheme. 

In his classical analysis of the "far" wake, Goldstein [1] used an Oseen-type of linearization 
in order to obtain the fundamental term of the expansion. Thereupon two further correction 
terms could be determined in a straightforward manner. It was then found, however, that the 
third term gave rise to a velocity defect which decreased with algebraical decay to zero, in a 
direction normal to the plane of symmetry of the wake. Now, it may be shown conclusively 
that if the boundary-layer type of flow assumed is to match with an outside potential flow, then 
this decay must be exponentially rapid, a principle known as the "rapid decay of vorticity", 
Chang [4]. Of course, in other cases this need not necessarily be so, e.g. Brown and Stewartson 
[5], Rotem [6], Kuiken and Rotem [7]. 

It is well known that a perturbation procedure of the type described cannot be proven to be 
unique, and Goldstein himself suggested the possibility that the unsatisfactory result was a 
fault of the expansion assumed. Stewartson [2] and Crane [3] showed that the inclusion of 
a transcendental expansion term forming an eigensolution would fulfill the requirements 
imposed. That leads to a "switchback effect" discussed by Chang [4] and by Rotem and 
Wygnanski [8], which in effect shows the progressive appearance of logarithmic terms of ever 
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increasing order as the expansion progresses. Stewartson's proof rests upon the iterative solu- 
tion of a form of the diffusion equation corresponding to Goldstein's case : this yields the first 
logarithmic term required explicitly. 

Moreover, this introduction of the transcendental term will give rise to an arbitrary constant 
in the expansion, multiplying the resultant "eigensolution", which can be determined neither 
from the boundary conditions imposed, nor from some gross, overall conservation properties 
of the flow. From the nature of the governing equations it may be expected that this unknown 
constant (and possibly subsequent ones) reflect the influence of the initial velocity profile, far 
upstream of the weak laminar wake, [2]. Therefore, the value of such unknown constants could 
be determined (approximately only) if it were possible to join the expansions considered here 
with a known velocity profile upstream. As this latter is not known, our expansion must 
terminate at the term with the first unknown constant as far as numerical computation is 
concerned. It might now, of course, be possible to proceed in a straightforward numerical 
manner with the complete equations of flow, Dennis and Dunwoody [9], Plotkin and Fliigge- 
Lotz [10]. On the other hand, we shall show that the expansion possesses interesting properties, 
insight into which is lost in a purely numerical integration. That fact makes the present in- 
vestigation highly worthwhile. 

The analyses described above were limited to the two-dimensional case, and the validity of 
the results was restricted to small values of the perturbation parameter (essentially the velocity 
defect in the plane of symmetry of the wake). The extension of the methods to axisymmetrical 
flows was first undertaken by Rotem and Wygnanski [8] and by Berger [11]. The purpose of 
the present investigation is twofold: 

(i) To improve the range of applicability of the expansions by the introduction of the Euler 
modification. 

(ii) To extend the treatment to the case of the axisymmetrical wake. Though it will be shown 
that with this geometrical configuration a constant which must be left arbitrary will occur 
already in the second term, there is some theoretical interest in the determination of the form 
of the higher approximations which are consistent with both the boundary conditions and the 
requirement of exponential decay of vorticity. 

The salient features of the expansions will be discussed in detail. 

2. Analysis 

The boundary layer equations for the steady, laminar and isothermal flow of an incompressible 
Newtonian fluid with no pressure gradient are, in dimensionless notation, 

Ou gu ~1 ~rO / ~ ~r~U 1 I 

{ (2.1) 
0u 1 ~ 
~xx + ~ ~ ( v ' r )  = 0  

where x = Xl/l; r = rl (Urer/(Iv))~ ; u = Ul/Uref and v-- vl (I/(UrefV)) ~. The suffix "i" will indicate 
dimensional coordinates, xl and r~ are orthogonal Cartesian coordinates (xl in the direction 
of the streaming flow), ul and vl the dimensional velocity components respectively, l is an 
arbitrary reference length, chosen so as to render the co6rdinate x of order unity, U~f a refer- 
ence velocity conveniently chosen to render the velocity at y ~ 0 at most of order unity, and v 
fluid kinematic viscosity. 6 takes only the values of zero (for two-dimensional flow) or unity 
(for axisymmetrical geometry). 

The boundary conditions to be fulfilled by the solution to equation (2.1) are, 

x > O  r = O  Ou/Or=O v=O / 
x >~ O r--- oo u = U t (2"2 ) 
X ---~ c~O U--~ U . 
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Moreover, the total viscous drag obtained by integrating the momentum deficiency from r = 0 
to r = oo must be the same for any given value of the x coordinate: thus, expressed in terms of 
the drag D and a drag coefficient Co, 

D 
C o -  1 ,l +~T,z (2.3) ~pl [Jref 

we obtain, 

Co = 47? \ - ~ /  u (U - u )?  dr = constant. (2.4) 

In order to restore homogeneous boundary conditions it is convenient to introduce the 
velocity defect ~ = U - u  into equation (2.1), (2.2) and (2.3). Choosing as reference velocity the 
free-stream velocity we have, 

0~ 0~ 1 ~ (r ~ 0~) (2.5) 
(1-~)~xx + V 0 r - r  ~ Or ~ r  

and 

Soo 
d O(1-O)radr 0 (x >0).  (2.6) 

dx o 

Now, sufficiently far downstream ~ r 1. A first approximation to the velocity distribution in the 
laminar wake can therefore be obtained through the solution of the linearized equation (2.5), 
neglecting ~ versus unity in the first term. Lastly, introducing a Stokes' stream function, 

1 a~b 1 0~b (2.7) 
= - r  -~ 0-~ v -  r a 0x 

the continuity equation will be fulfilled identically. 
We now propose to obtain higher approximations to the solution for the velocity profile, 

which will enable the calculation for the case in which fi is not infinitely small; or alternatively 
expressed, the higher approximations will enable the extension of the range of validity of the 
solution to values of the co6rdinate x which are not infinitely large. This extension of the solu- 
tion is possible in several ways; (i) transforming equations (2.1) into an integral equation which 
may be solved iteratively, as done by Stewartson [2] ; (ii) using LighthilFs method, as Crane [3] 
has done for the two-dimensional case; or lastly, expanding the solution in an asymptotic 
series in an ad-hoc manner, Goldstein [1]. This latter method was chosen here because of its 
inherent simplicity. 

3. The Two-Dimensional Wake 

The two-dimensional wake has already been examined by many other investigators as mention- 
ed above. Here we introduce the Euler transformation into the expansion parameter in order 
to improve convergence, and examine the resultant changes. The requisite equations of motion 
and continuity are obtained when 5 is put equal to zero in (2.1) through (2.7). Examination of 
equations (2.1) through (2.6) for ~ ~ 1 immediately reveals that the proper co6rdinate variable 
will be obtained by 

el = yx  -~ , (3.1) 

where r has been replaced by y for convenience. 
Conversely, had we specialized our considerations to the region near the start of the wake, 

where fi is of order unity, a co6rdinate @ = y x  -~ would have been appropriate, corresponding 
to Goldstein's "strong (or "near") wake", near the end of the body giving rise to the wake [12]. 

We shall now introduce a Stokes stream function and assume an ad-hoc expansion as 
follows, 
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O ( x ,  7) = Z (3.2) 
k=1  

= - ~ 7k(Of~(7) 7~(0 = a (3:3) 
k = l  

where the functions 7~(0 (k > 1) are for the present not known explicitly. That an expansion 
of the form stipulated in equation (3.1) can be obtained in a way such that the functionsfk 
depend upon the similarity variable 7 only, and not also upon x, has been shown by Chang [4-1. 

We adopt the following definitions, and normalization of the drag integral, 

e = A x  -~  (3.4) 

A = (3.5) 

= - ( 3 . 6 )  

and the boundary conditions, 

f (0) = / " (0 )  = 0 (3.7) 
f '(oo) = 0. (3.8) 

The process of finding the fundamental term consists of inserting, 

71 (e) = e (3.9) 

into equation (3.1), and considering only the first term. Then, 

01 = Af t  (7) (3.10) 

respectively, 

Then the linearized differential equation for the unknown function f~ (t/) reduces to, 

The 
(3.7) 

(3.11) 

7 .,',t ~ 1 F/ f ; "  + ~J1 n-~j1 = O. (3.12) 

solution fulfilling the requisite boundary conditions and normalization conditions (3.8), 
and (3.6) is, 

f ;  = - exp [ - (7/2) 2] (3.13) 

f~ = - x/re erf (7/2). (3.14) 

The drag-integral condition, equation (3.6), respectively (2.6) now reduces to the requirement 
that there be no contribution to the constant of order higher than the first in e. 

The form of the functions 7k cannot be known a priori, except for )'1. It is, of course, well 
known that an asymptotic expansion such as given in equation (3.2) cannot be proven to be 
unique. For the two-dimensional viscous wake Stewartson [2] and others [3], [4] have proven 
that some of the functions Yk (0 are necessarily of logarithmic order in the expansion parameter 
e. The logarithmic terms ensure an exponentially rapid decay of vorticity with distance normal 
to the plane of symmetry of the wake, a necessary requirement for that case, in order to match 
the given outer flow. 

Van Dyke [13] has shown that it is permissible to introduce terms transcendental in the 
expansion parameter e into a sequence such as (3.2) ab initio. Terms which should not appear 
will then usually give rise to an associated function fk which vanishes identically. It is on 
this basis that terms logarithmic in e were introduced here. It is found, in particular, that in 
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the expansion considered logarithmic terms are necessary in order to ensure the fulfillment of 
the boundary and drag conditions by a subsequent term of integral power in e. An additional 
refinement introduced into the actual expansion here, which will improve on the rate of con- 
vergence, is the replacement of the perturbation parameter e through the Euler transformation 
as follows: 

= 4(1 +~) (3.15) 

whence 

. . . .  (3.16) 

The expansion for the stream function is found after some manipulation as follows (see c.f. 
Cole [14~), 

0 = x~" [~f~+ (~)2f2 + (~)3 In ~f3+ (~)3f4+O[(e)4 ln2 g13. (3.17) 

Proceeding as in the case described above the following set of equations for thefk(t/) is obtained 
for k > l ,  

f ' ; '  + = �89 + l ) f ;  (3.18) 

q r,, + 3_c, (3.19) f ; " + ~ a 3  zJ3=0 

/Tf, ,  t_ 3 ,e, 1 , = ~ [ -f~ + -fi 'f2 + L  f; '  - f ~ " +  ~a,  2a4 (3f;+2)f~ (f;)2]. ( a . 2 0 )  

These equations give rise to the corresponding solutions, 

f~ = -e-("/2)'. [1 +�89 (e -("/2)' + ~ -  i?. err(q/2))] 

f2 = - x/n [(2-e-(~/2)2)-err(q/2)+,f2 erf(e/42)] 
2 

f;  = - G1 (1 - t/2/2)- exp [ -  (r//2) 2 ] 

f3 = - G~q .exp [ -  (U2) 2] 

f~=  + t/-~- �9 err 3 +Ga'erf  - e  -1"/2)2" 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

�9 { ~ ( ~ / 2 - 2 ) .  Ie  ("/2)2. IGl 'erf(2)  + 1, erf@/3-~)]d(2)+G2(2-r /2)  + 4 x / 3  

+l+Gl+e-("/2)2(l+�89177 /-~-~//erf 2-~ ~(2-q2)'erfZ(tl /2)+ 

47~ + -~- ~/(1 +�88 �9 erf(t//2)}. (3.25) 

Here the first equation is identical with that given by Goldstein [1]. The effect of the Euler 
transformation appears only starting at the second term. The constant G1 was first determined 
by Stewartson from the condition of exponentially rapid decay of vorticity and is found to be 
equal to -1/(4x/3 ). The constant G2 must remain indeterminate. 

The expressions for the velocity components may now be written down. Thus, 
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I 1 (2)7 ~ = ~.exp ~ �9 1+~ +�89 + ~ -  ~/err + (~)2 In ~. 

.14~3\2_ - [r/2 1) + (~,2"~{8~3 (2-~2," x/~ ,Ie (~/2'~. [e r f (~) -er f  @3 2)] d ( ~ ) +  

1 + 1 - 4/--- ~ + G=" (2-  t/2) + e -("/2J2 (1 +�89 -("/2)=) + 
D % /  

+�89  r/ rc (2_r/2). err2 (2) + ~/~z erf(2) r/erf (,]2 ~ ) -  ~ -~- r/(1 +�88 e-'"/z'=) �9 }}+ 

and, 

+(~)~,a,g~/~q/~ [erf ( 2 )_  erf (~/3 2r/) 1+ 01 (e)4 in 2 ~1 �9 

-  )erf(2)- �9 v=2-  

(3 �9 

�9 (1 +�89 l--~ ~j~ erf (x/2 2)+ (s In ~ �9 - -  

�9 e-("/2)2 (3 -- ~2~)} +Ol(~)a,. 

*/ 
4x/3 

(3.27) 

For q = 0, the first of the expressions above may be compared to Stewartson's equation, page 
179 (op. cit. supra). It is seen that his constant fl is equivalent to our G2. It should again be 
noted that the term in v of order (g)3 no longer goes to zero as ~/--+ oo. The error is also sym- 
metrical in q whereas v has to be antisymmetrical. The same effects, attributable to the applica- 
tion of the boundary-layer approximations, were noted by Goldstein, [1]. 

4. The Axisymmetrical Case 

We consider here the equations (2.1) through (2.6) with 6= 1. The similarity transform and 
fundamental solution become, in analogy to (3.1) through (3.3), 

i.e. 

with 

r 
= -2 x (4.1) 

~bl (x, ~)= + ~ f l  (~) (4.2) 

t 
~x (x, ~) = ~-x~f~ (~) (4.3) 

= C o .  l'Uref 
7z y 

The linearized equation (2.5) to first order reduces in analogy to (3.12) to, 

f ; " +  (2(2-1)f ; '+  + f;  = 0  

and, to first order in fi, equation (3.6) becomes for this case 

(4.4) 

(4.5) 
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f:f~ ( ( ) =  - (4.6) d( 1. 

The solution for ft is well known (c.f. Rosenhead, [15], p. 456)* 

f; = - 2 (  exp(-  (e) (4.7) 
k = exp ( -  _ 1 .  (4.8) 

We now propose to obtain higher approximations to the solution for the velocity profile, 
which will enable the calculation for the case in which ~7 is not infinitely small. Introduce 
at (=  0 as a small perturbation parameter, thus 

e 2x (4.9) 
and the expansion for the stream function becomes, 

7*(x, ( )=  +2x ~ 7a(~)fa(~) (4.10) 
k = l  

-oo t 
fi(x, ~) = - ~ .  Z 7k(e)f~ (() (4.11)" 

~ k = l  

Yl (~) = 8 .  (4 .12)  

The boundary conditions for the functions fk are found by insertion into (2.2) to be as follows 

(f{'-f{/()/(=O at ( = 0 ,  x > 0  ] 

f~--fk/( = 0  at ( = 0 ,  x > 0  ( (4.13) 

and l 
fl/( = 0  at ~=o9 .  

We shall again introduce the Euler transformation. Then the expansion for the stream function 
becomes, 

T = 2x. [~fl+ (~) 2"ln ~f2+ (~)z "f3+ (~)3 in 2 ~f4+ (~)3 in ~fs+(~)af6+ . . .] .  (4.14) 

Inserting into equations (2.5) and collecting terms of equal order in (~), the following set of 
confluent hypergeometric equations is obtained for the functions fk: 

f~"+ (2( -l\''~)f~ + (6 + ~-2)J~ 0 =  (4.15) 

2 ~2 
f~"+ ( 2 ~ -  ~)f~'+ ( 6 +  ~-2)J~ = -4f~ - ~(fi') +4f; (4.16) 

�9 1 \  ,, f~."+i2(-~)f~+(lO+le)fJ=O (4.17) 

f~"+ (2( - 1~' " , 3 , ' ~)f~ + (lO + ~-g)f~= -8f~-2(Tf,-4)f~+ ~(ff' -~ ) f2 .  (4.18, 

The solutions can be obtained in straightforward manner as follows 

f~ = C~ (((2 _ i) exp(-  (2) (4.19) 

C1 -2 f2 = - ~ -  ~ exp(-  (2) (4.20) 

f~ = ~e-r {(~2 _ 1). [ -�89 (z) + 2C1 In ( + C2] -�89 -~ - 2  (1 + C1) } (4.21) 

f3 = �88 {~2 [ + E i ( - ( z )  -4C1 In ~-2C2] +e-~2+2(C, +2)} +C3 (4.22) 

* Rosenhead's f = - - -  
( d~ 
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f~ = +C~e-;~(1-2~z+�89 ~) 

c ~  e_~. ~ (~_ �89  c ,  
A = + -  T 

f; = ~e-~{(1-2~2+�89 �9 [+�88 In ~+C6] + 

(4.23) 

(4.24) 

+ (-~ e-  r + 1). (~e _ 1) + 2 C# (3 - 2{~)} (4.25) 

+ e -~  (l _ff2) + � 8 9  l l~Z)}+C7, fs = ~e-~2 {~2 ( 1 -  ~-~ ) [Ei(-~z)- 21n ~ + 4C6] -~- 
(4.26) 

where Ei is the exponential integral. The manner in which these solutions have been found is 
essentially that of Rotem and Wygnanski [8]. Indeed, for k = 1, 2 the equations and their 
solutions happen to be identical with the first two terms calculated in [8] for the case of a 
weak axisymmetrical jet. 

The constants C~ throug h C7 appearing in the equations above have now to be determined. 
In the case of the two-dimensional wake [2] and the two-dimensional weak jet [8] these con- 
stants are obtained by a technique of "switchback" formalized recently by Chang [4], in 
conjunction with the condition that the vorticity, and hence also the velocity in the direction 
of streaming, must decay at a rate faster than algebraical with the distance normal to the plane 
of symmetry of the wake provided the outer flow in potential. In the present case the condition 
of exponential decay normal to the axis of symmetry is fulfilled automatically : all constants 
except C2 and C6 are determined by the boundary conditions. However, these two constants 
remain entirely arbitrary. It may be presumed from the properties of the basic parabolic partial 
differential equations, which are an approximation to the complete elliptic equations of flow, 
see [2] that their determination depends upon the form of the initial velocity profile upstream. 

The other constants have the following values" C 1 = �89 C 3 = - -  3, C 4  = __ 1, C5 = 0, C 7 = - -  1, 

As far as numerical evaluation is concerned the expansion will have to be terminated at the 
second term due to the unavailability of the constant C2. 

We are now in a position to write down the expression for ~ and for v as follows" 

= ~ e -~2 + 2 - ~  In ~.�89 _ 1)+~{(~2_ 1)[+�89 - I n  i f -  C2] + � 8 9  

+_~(~)2 in 2 (~)(1 - 2~ 2 +�89 - (~)2 In ~{(1 - 2~ 2 +�89 [�88 ~) -�89 In ~ + C6] + 

+ (-~e -~  + 1)' (ff~ - 1) -�88 - 2~2)}~ + O I(~)a I (4.27) 
] 

and, 

1 {4~1e_~2+~ In ~E~(2-~2)e  -~2] 
;=  g x ~  

- ~ .  e-~2 {~ 2. (2-~2) �9 [ E i ( -  ~2) -2  In ~ - 2 C z ]  + (1-~2)e-~2+ ( 1 -  7~1)} + 

- 10~- (~)2 ln2(~) e-~2(3~2_�89 3)_ (~)2 In ~ �89 -~2. 

. {(2 (3 - 3~ 2 +�89 �9 [Ei(- (2) _ 2 In ~ + 4C6] q- (1 3~2  +�89 

�9 e-~2 + (1 - 15 C 2 + ~ C4)} + (~)z In ~ / +  0 I(~)al " (4.28) 

It should be realized that v as per equation (4.28) may not vanish with ( ~  m. This blemish is 
a result of the application of the boundary-layer approximations to the problem on hand, [1]. 
However, any remainder must be of order (~)3 or smaller. 
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5. Results and Discussion 

Higher order approximations to the laminar boundary-layer flow of an incompressible fluid 
in the wake of a symmetrical disturbance are given in the present paper. The two-dimensional 
case, documented elsewhere in great detail, [1], [2], [3] and [4] is reconsidered. The Euler 
transformation is introduced and higher-order expansion terms are derived. The asymptotic 
expansions given in the paper are, of course, valid only to the extent that the boundary layer 
approximations apply, i.e. (for the rotationally symmetrical case) within a space of revolution 
with the centre of the wake as axis of symmetry. The terms neglected in the complete equations 
of motion become of order unity for very small x, where the expansion is not applicable in 
any case (as e becomes large), and at very large ~ (respectively q), x being given. 

The axisymmetrical case is expanded in a like manner, but in both cases the inner and outer 
co6rdinate expansion problem of matching with the near wake, considered by Meksyn [16] 
and Berger [11] is not treated" this, mainly, because its detailed form would depend on the 
particular upstream conditions obtaining, a subject which is outside the scope of the present 
work. 

In order to improve the convergence of the asymptotic expansions the EuIer transformation 
was introduced, both in the axisymmetrical and in the two-dimensional configuration. This 
modification has, of course, no effect upon the first order term. The form of the sequence is 
not affected by the introduction of the Euler transformation either, though the detailed func- 
tions certainly are. The convergence of an asymptotic sequence of a limited number of terms 
should thereby be improved. 

An interesting feature of the axisymmetrical wake is that the presence of terms of logarithmic 
order in the expansion parameter is required in order to satisfy the boundary conditions, rather 
than to ensure the exponential decay of vorticity as in the case of two-dimensional wake 
flow. In the present investigation the terms of logarithmic order were, of course, assumed a 
priori, and their justification was then shown a posteriori. The form of the expansion assumed 
in the present work appears to be entirely self consistent, with no other terms needed. Never- 
theless, uniqueness is not one of the features of this type of expansion. 

It is interesting to note that in the two-dimensional wake the normal component of velocity 
does not vanish as q-~ ~ the remainder being of order (~)3. In the axisymmetrical case also v 
vanish as ~--, oc. However, starting with order (~)2, the decrease in v with ~ is algebraical 
and not exponential. It is conceivable that the choice of optimal coordinates in the sense of 
Kaplun would have postponed this particular difficulty. 
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